
 
 
 
 

 
Implementation and test 
of MLFit application 
using OpenMP and MPI 
parallel technlogies 

 
 

 
Ruggero Caravita 
 
CERN openlab 
8 August 2011 

 
  

http://www.cern.ch/openlab


 

Implementation and test of MLFit application using OpenMP and MPI parallel technologies 

 
 

 Page 2 of 27  

oTN-2011-01 openlab Summer Student Report 

 

Implementation and test of MLFit 
application using OpenMP and MPI  

parallel technologies 
Ruggero Caravita 

Alfio Lazzaro 
12 August 2011  

Version 1 

Distribution: Public  

 
 
Abstract .............................................................................................................................. 2 
1 Introduction ................................................................................................................. 2 

1.1 Brief overview on the algorithm ..................................................................... 3 
1.2 Work splitting between OpenMP and MPI ..................................................... 4 

2 Adding MPI support .................................................................................................... 6 
2.1 Class design ................................................................................................... 7 
2.2 Parallel reduction in MPI ............................................................................... 8 

3 Printing to standard output within a parallel context ............................................... 9 
3.1 Intercepting user calls to std∷cout ................................................................ 10 

4 Measuring time within a parallel context ................................................................. 11 
4.1 Runtime application timing .......................................................................... 12 
4.2 External profiling with TAU ........................................................................ 13 

5 Testing the prototype ................................................................................................ 14 
5.1 Running with OpenMP ................................................................................ 14 
5.2 Running with MPI ....................................................................................... 15 
5.3 Running with OpenMP and MPI .................................................................. 16 

6 Conclusions and future work ................................................................................... 17 
Appendix A: MPISystem class details............................................................................ 17 
Appendix B: Adding support to OpenMPI ..................................................................... 19 
Appendix C: Adding support to RCCE ........................................................................... 22 
Appendix D: MPITimer class details .............................................................................. 25 
Bibliography .................................................................................................................... 26 
 

 

 

Abstract 

The aim of the present document is to describe the openlab summer student project consisting in 

adding the support of the MPI parallel library to the MLFit prototype. The project includes both code 
implementation and test, aiming to benchmark the application in multiple scenarios (such as only OpenMP, 

only MPI and a tradeoff between them) and hardware solutions. 

1 Introduction 

Briefly, MLFit prototype is a simplified version of the RooFit package (a crucial part of the official 
ROOT library used in likelihood-based data analysis) aimed to be an easy to compile but sketched 

implementation preserving the same programming interface of RooFit without all the physics-related details. 

In this document I will present only a summarized overview of the simplified algorithm used in MLFit; an 
exhaustive description on maximum-likelihood optimization techniques and the RooFit fitting algorithm 

from which MLFit is taken can be found in (1).  
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Significance improvements in performance of the MLFit can be achieved with a well-designed 

parallel implementation which allows work splitting on modern CPUs and/or GPUs. Currently, many 
versions with different parallel technologies have been (or are being) developed, i.e. OpenMP, CUDA, 

OpenCL, and tested on many hardware platform, from NVIDIA and ATI GPUs to Intel Xeon and MIC. 

In the present work I will present the MPI version I developed on the top of the existing OpenMP 

implementation, in order to exploit both shared memory parallelism enforced by OpenMP and message 
passing parallelism between workers enforced by MPI. I will present also the test results obtained running 

the application on many hardware platforms, from a multi-socket Xeon server to Intel SCC research 

microprocessor. 
For more details about the technique exploited for parallelization in such pre-existing version of 

MLFit with OpenMP, see (2).  

The algorithm used in MLFit and its parallel implementation are briefly explained in the next 
introductive paragraphs. In the second section I discuss the details about the MPI implementation in MLFit 

with particular care to the software design to fit all the mandatory usability requirements. In the third and 

fourth sections it is discussed how to print to standard output in a parallel application with no code 

modification from the user and how to measure time. In the fifth section the scalability tests with OpenMP 
and MPI are shown, together with a performance comparison in the hybrid scenario (both OpenMP and 

MPI). 

1.1 Brief overview on the algorithm 

The aim of the RooFit library is to perform fitting procedures, i.e. adjusting PDF parameters in order 

to best reproduce the numerical data from the experiments, given a set of probability distribution functions 
from theoretical models. From now on, let’s refer to probability distribution functions as PDFs and to an 

experiment numerical data as event. 

The well known technique used by RooFit to perform fitting is called maximum likelihood 
estimation: without going into the mathematical details (see (3) for a detailed description), at the present 

level what should be taken into account is that there exists a function  

 

     log

N

i

iNLL PDF   x  (0.0) 

 

that should minimized with respect to the   parameters in the least time possible, where N is the number of 

events. The computational time depends on the number of events and complexity of the PDF. 

The goal of the prototype is to speed up at the best the PDF evaluation without changing library 
interface, in order to import the same evaluation technique in the production RooFit package. 

A simple sketch of the algorithm used in the sequential single-threaded prototype to benchmark the 

PDF evaluation is the following: 
 

 Create a N-sized sample array for the input double events; 

 Create a N-sized array of double results; 

 For i  from 0 to N 

o Evaluate the PDF in ix :  i iy PDF x  

o Evaluate the negative logarithm of iy ; 

o Compute the total NLL summing up all the logarithms. 

 

When moving to parallel computation this algorithm must be slightly modified in order to split the 

work efficiently between the parallel workers. The OpenMP implementation, fully described in (2), follows 
the same steps sketched above. The advantage of working with arrays of data is exploited in the evaluation of 

the PDF that now is performed by a group of threads, each working on an independent part of the array. The 

reduce operation is thus performed parallel, with each thread summing its own results in a different 
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accumulator; finally, the root thread sums up the few remaining accumulators. The sketch of the algorithm 

for such parallel implementation is the following (with the usual convention of bold letters for arrays) 
 

 Create a N-sized sample array of input events; 

 Create a N-sized array of double results; 

 Split the input between threads, defining for each thread two vectors 
ix  and 

iy , respectively 

the input and the output to be processed by that threads;  

 Each thread t within threads 

o Evaluate the PDF:  i iPDFy x  

o Evaluate the negative logarithm of 
iy  

o Sum all the logarithms within 
iy  in an accumulator 

is  

 Sum all the accumulators to get the final NLL value: 

th e ds

i

r a

i

NLL s  

 
Since the goal of the present project is to exploit both MPI and OpenMP in the computation, this 

implies to modify the existing OpenMP parallel algorithm in order to take into account also MPI. In 

particular MPI can be consider on top of the OpenMP, since we operate MPI parallelization and then 
OpenMP parallelization for each MPI process. There are two main advantages of adding support to MPI: 

running the application on networked systems of multiple computing nodes and increasing performance on 

the single node reducing the number of synchronization needed by OpenMP. 

 Let’s say we have an input dataset I composed of N events to process, and a set of P MPI parallel 
workers with T OpenMP threads each. Each MPI worker w holds s a copy of the whole input dataset. Since 

OpenMP uses shared memory, the input data chunk processed by OpenMP threads should be the most 

compact possible in memory to avoid cache misses. A clever way to fulfil this constrain is first split the input 

dataset between MPI workers into N P subsets, map subsets one to one on MPI workers and then split 

again each subset between threads into chunks of events, each to be processed by a different thread wt . 

In the next section I explain how to split the work between the two technologies. Each w operates on 

a subset of I defined by two indices iMPIStart, iMPIEnd; each wt in w has the chunks ix  and iy  defined by 

two other (sub)indices iStart, iEnd. 

It should be clear that, within one w, the routine runs exactly the same as in the OpenMP 

implementation except for the different start and end indices. The only real difference from the OpenMP-

only case is that each worker now owns a different sum accumulator relative only to its subset of data. In 
order the final result to be computed, a second parallel reduction must be performed thus summing up all the 

MPI partial results owned one by each worker. This reduction is performed via an 

MPI∷COMM_WORLD.Allreduce() call; workers perform collective communication summing up all the 
accumulators (double-precision numbers) to produce the final sum. It must be underlined that this is the only 

communication the MPI application must do in the whole application, and each worker communicates only a 

double number. We expect a very small (and thus negligible) overhead due to MPI communication. 

1.2 Work splitting between OpenMP and MPI 

Ideally each worker will take N P events and process them independently of the others, before 

summing up the results all together (reduction). If N is not multiple of P, %N P  workers will compute one 

more event splitting also the remainder.  

In the original OpenMP implementation, of course, P corresponds to T, so the work is split only 

between the parallel threads producing integer indices iStart and iEnd corresponding to the first and the last 

event to be processed by the current thread (see Code block 1). 
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Code block 1: Algorithm to split work between multiple OpenMP threads 

What does it mean adding MPI on the top of OpenMP? First of all, the work must be split twice: 
between the MPI workers and then between OpenMP threads. Second, we must take care to set the right 

indices also if MPI or OpenMP are disabled. The new algorithm for work splitting looks similar to the 

previous, despite of the few MPI calls before the OpenMP splitting (see Code block 2). 
 

Int_t iStart, iEnd; 

 

// That's the total number of events that this process should take 

care of 

Int_t nEvents = MY_EVENTS; 

 

// Now I split for OpenMP 

int numEventsIn = nEvents / omp_get_num_threads(); 

int numEventsOut = nEvents % omp_get_num_threads(); 

 

// OpenMP load balancing 

iStart = omp_get_thread_num()*numEventsIn;  

if (omp_get_thread_num() < numEventsOut) { 

  iStart += omp_get_thread_num(); 

  iEnd = iStart + numEventsIn + 1; 

} 

else { 

  iStart += numEventsOut; 

  iEnd = iStart + numEventsIn; 

}    

 

// Update nEvents 

nEvents = iEnd - iStart; 
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Code block 2: Algorithm to split work between multiple MPI workers and OpenMP threads 

2 Adding MPI support 

In this section I describe in detail the MPI implementation in the MLFit prototype, taking special 

care to the class design and the programming solutions in order to include MPI on the top of OpenMP 

without changing the external programming interface of MLFit. I describe also how to output to standard 
output in a parallel context without changing application code and how to perform a parallel reduction in 

MPI in a safe and deterministic way. 

The application should be designed in such a way it can be compiled with or without MPI, without 

losing functionality or the original OpenMP parallelization. In addition, the less the user of RooFit has to 
modify its code, the better is; in particular, explicit calls to MPI, included MPI_Init() and MPI_Finalize() (or 

equivalent calls at the beginning and at the end of the execution) must be avoided by a smart design of the 

code. 
In order to match these requirements, the software is designed with three levels of decoupling that 

abstract RooFit user from low level MPI calls. First, all the calls to MPI APIs are masked by special 

precompiler macros: the compiler is allowed to completely switch off MPI (not even linking is required) 

only by defining a macro. Second, within RooFit there are no direct calls to MPI APIs; all the calls are 

Int_t iMPIStart, iMPIEnd; 

Int_t iStart, iEnd; 

 

// That's the total number of events that this process should take 

care of 

int Ev = nEvents; 

 

// Now I split for MPI 

int NumEventsIn = TotalEvents / MPI::COMM_WORLD.Get_size(); 

int NumEventsOut = TotalEvents % MPI::COMM_WORLD.Get_size(); 

 

// MPI load balancing 

iMPIStart = MPI::COMM_WORLD.Get_rank()*NumEventsIn;  

if (MPI::COMM_WORLD.Get_rank()<NumEventsOut) { 

    iMPIStart += MPI::COMM_WORLD.Get_rank(); 

    iMPIEnd = iMPIStart + NumEventsIn + 1; 

} else { 

    iMPIStart += NumEventsOut; 

    iMPIEnd = iMPIStart + NumEventsIn; 

} 

Int_t MPIEvents=iMPIEnd-iMPIStart; 

 

// Now I split again for OpenMP 

int numEventsIn = MPIEvents / omp_get_num_threads(); 

int numEventsOut = MPIEvents % omp_get_num_threads(); 

 

// OpenMP load balancing 

iStart = omp_get_thread_num()*numEventsIn;  

if (omp_get_thread_num()<numEventsOut) { 

  iStart += omp_get_thread_num(); 

  iEnd = iStart + numEventsIn + 1; 

} 

else { 

  iStart += numEventsOut; 

  iEnd = iStart + numEventsIn; 

}    

 

// Update nEvents 

nEvents=iEnd-iStart; 
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mediated by a special class, MPISystem, that takes care of calling MPI if it is enabled or just pass-by 

otherwise. Third, moving library function calls from MPISystem to its derived classes via protected virtual 
methods, it is possible to support other message-passing libraries different from MPI. 

Finally, designing MPISystem with the singleton design pattern it is possible to call automatically 

MPI_Init() and MPI_Finalize() without any code modification in the application on the top of RooFit. 

In the next sections I explain in more details how these levels of decoupling are implemented. 

2.1 Class design 

As sketched above, all the calls MPI are decorated with special disabling macros, in a way so that it 

is possible to completely disable MPI removing all the function calls and replacing them with default values 

valid for OpenMP-only execution. This is actually performed automatically if the code is not compiled with 

the MPI compiler (mpic++). 
 

 ENABLE_MPI: the main macro to configure the application for MPI usage. If not defined, 

all the calls to MPI are removed from the code even at compile time, avoiding to link the 

unnecessary libraries. This macro is not defined if the compiler doesn’t support MPI; 

 MPISafeCall(func): call to func is added to the code only if a ENABLE_MPI is defined; 

 MPIElse(funct): call to func is added to the code only if ENABLE_MPI is not defined. 

 

The trivial C++ source code to implement those macros is contained in Code block 3. 
 

 
Code block 3: C++ implementation of the macros for automatic removal of MPI calls from the code 

 

From now on, all these macros are omitted in the next code blocks for readability. 

All the other levels of abstraction are achieved by the smart design of MPISystem class: it takes care 
of MPI initialization and shutdown, inserts a layer of abstraction between RooFit and real MPI APIs calls 

and add support to other message passing libraries such as RCCE (4). 

The singleton design pattern is particularly effective since MPI_Init() call, if placed in the default 
constructor of the singleton class, will be called only once at the first time the user requests MPI support. A 

subtle point, particularly important to match the requirement, is the choice of the singleton design. There 

exist many slightly different singleton patterns in C++, while the most common are Gamma singleton and 

Meyers singleton, see (5) and (6 p. 32). The Meyers singleton design is particularly interesting for our 
purposes since it offers automatic deletion of the instance (see Code block 4); in this way the MPI_Finalize() 

call can be easily placed in the default destructor of MPISystem class. 

 

// the purpose of this macro is shutting down MPI 

#ifdef ENABLE_MPI 

    #define MPISafeCall(p)      p 

    #define MPIElse(p) 

#else 

    #define MPISafeCall(p) 

    #define MPIElse(p)          p 

#endif 
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Code block 4: modified Meyers singleton design pattern used for MPISystem 

All MPISystem APIs are abstracted by public methods of MPISystem, e.g if the user wants to call 

MPI_Wtime(), he should call instead MPISystem∷Instance()→WTime(). Each public method internally calls 

a protected virtual method of MPISystem, e.g. MPISystem∷DoWTime(), to be overloaded by children 
classes of MPISystem with the implementation-specific code. This way of exploiting inheritance is often 

referred as implementation inheritance, since children of MPISystem decouple function call logic from all 

the possible implementations. 

This fact is particularly important; it provides the last important functionality of MPISystem, an easy 
way to extend support to another existing message passing libraries with same logic but different interface 

than MPI.  

Up to now, only two libraries have been added to MLFit: OpenMPI and RCCE. OpenMPI is an open 
source MPI standard library that operates via network both for accessing remote nodes and local workers. 

RCCE (‘rookie’) is a tiny MPI-like library written from Intel Corporation to run on the Intel Single-chip 

Cloud Computer; it has reduced functionality than standard MPI and a slightly different interface. The main 
purpose of adding support to RCCE is to benchmark the code also on this new research processor.   

For reference, the complete source code of MPISystem class is available in Appendix A: MPISystem 

class details. For the implementation-specific code, see Appendix B: Adding support to OpenMPI and 

Appendix C: Adding support to RCCE. 

2.2 Parallel reduction in MPI 

The parallel reduction in MPI, executed just after the OpenMP reduction, have to produce the final 
result summing up all the partial OpenMP sums in at least the root process. It can be realized in many ways, 

the most simple of which is calling MPI∷COMM_WORLD.Allreduce with MPI_SUM as reduction 

operation. 
The call to the API has to be performed to keep OpenMP working with MPI disabled (see Code 

block 5). 

 

// modified Meyers singleton design pattern 

class MySingleton { 

protected: 

    // default constructor 

    MySingleton() { 

        // add your initialization code here 

    } 

     

    // copy constructor locked 

    MySingleton(const MySingleton &Ref) { 

     

    } 

     

    // default destructor 

    ~MySingleton() { 

        // add your shutdown code here 

    } 

     

public: 

    // getinstance method 

    static MySingleton *Instance() { 

        static MySingleton Instance(); 

        return &Instance; 

    } 

}; 
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Code block 5: code for performing MPI reduction 

3 Printing to standard output within a parallel context 

The first problem to take care of when moving to MPI is printing to standard output: a group of 

parallel processes accessing standard output at the same time will produce inconsistent string of characters. 

OpenMP doesn’t suffer the same problem; it is quite trivial to perform thread-safe output with critical zones. 
There are many conceptual ways of handling output in a multi-process context. In most of the cases, 

standard output is managed as a spinlock in order to avoid inconsistencies. Here I present only the two 

methods used in MLFit, root print and ordered print, before discussing how to practically implement them.  
The first way to manage standard output is enabling printing only by one process (let’s refer to this 

process as root). All the other processes in the system are not allowed to write to standard output unless root 

status is moved to one other process. If one process asks for printing but doesn’t have the root privileges, its 

request is just discarded. This is the way used in MLFit to print the final results of the computation. The MPI 
implementation of this output is trivial. 

The second way, ordered print, is particularly useful in debugging: each process prints its output 

sorted by ascending process id. A bit of communication is needed to perform this print, since the workers 
have to synchronize themselves to produce the sorted output. The algorithm is quite simple:  

 

 at the beginning process 0 is root and is allowed to print, while the others are waiting to 

receive the permission in a blocking way; 

 after finishing the print,  root tells the other processes that process 1 is the new root and 

begins waiting the end of print, discarding any further communication; 

 then process 1 prints, while the others are waiting; 

 process 1 increments the value of root and broadcast to the others, before idling; 

 … repeat for all processes in the set … 

 the algorithm finishes when the processes receive a communication stating that the new root 

worker is equal to the number of processes. 

 

The MPI implementation of this way of printing is included in code block 6. 
  

double Sum = 0.0; 

 

// OpenMP reduction 

// ... the value of sum is set to the partial sum of this worker ... 

 

// MPI reduction 

MPISafeCall( 

    int WorkerId = MPISystem::Instance()->GetWorkerId(); 

    int RootId = MPISystem::Instance()->GetRootId(); 

    double ReceiveBuf = Sum; 

     

    MPISystem::Instance()->WorldReduce( 

        &Sum,  

        &ReceiveBuf,  

        1,  

        MPI_DATATYPE_DOUBLE,  

        MPI_OP_SUM 

    );   

    if (WorkerId == RootId) { 

        Sum = ReceiveBuf; 

    } else { 

        Sum = 0.0; 

    } 

) 
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Code block 6: MPI code for sequential printing in parallel context 

There is still a major problem left: change way of printing to standard output without modifying 

original application source code (i.e. explicitly calling a custom function to perform ordered print). In the 
next sections I explain a way of solving this problem when dealing with C++  STL default print. 

3.1 Intercepting user calls to std∷cout 

Many user applications using ROOT and RooFit are written in C++, using STL iostream to output to 

screen. There is an elegant trick to hook the calls to std∷cout in the C++ way and substitute the default non-

parallel print with a custom parallel-safe one. 

First, it must be created a child class of streambuf, the object of STL managing stream outputting. 
Let’s call this new class mpibuf. Within mpibuf, two virtual methods of streambuf have to be overridden: 

overflow and sync. The first is called when a new character is inserted into the stream; the latter is called 

when a flush signal is received and the print have to be performed. overflow should take care of inserting the 
new character into a buffer that will contain the string to print at the moment of sync. 

Then, an instance of mpibuf must be created and the default std buffer substituted by the new one 

with a call to std∷cout.rdbuf() function. In code block 7 an example of std∷cout output hooking is shown. 

// prints buffer starting from zero 

int RootId = 0; 

int WorkerId = MPI::COMM_WORLD.Get_rank(); 

int WorkerNum = MPI::COMM_WORLD.Get_size(); 

 

while (RootId != WorkerId) { 

    // this worker should wait 

    int NewRootWorker=-1; 

    // get new root worker id 

    MPI::COMM_WORLD.Bcast(&NewRootWorker,1,MPI_DATATYPE_INT,RootId); 

    if (NewRootWorker >= 0) { 

        RootId=NewRootWorker; 

    } else { 

        std::cerr << "Invalid new root worker id, aborting"  

<< std::endl; 

        exit(1); 

    } 

} 

 

// this worker got root permissions: do the print 

std::cout << " worker " << WorkerId << " says hello world!"  

    << std::endl; 

 

// increment root id and broadcast 

RootId++; 

MPI::COMM_WORLD.Bcast(&RootId, 1, MPI_DATATYPE_INT, WorkerId); 

 

// wait until finish 

while (RootId != WorkerNum) { 

    // this worker should wait 

    int NewRootWorker=-1; 

    MPI::COMM_WORLD.Bcast(&NewRootWorker,1,MPI_DATATYPE_INT,m_RootId); 

    if (NewRootWorker >= 0) { 

        RootId=NewRootWorker; 

    } else { 

        std::cerr << "Invalid new root worker id, aborting"  

<< std::endl; 

        exit(1); 

    } 

} 
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Code block 7: sample C++ code for hooking std∷cout calls and redirect output to a custom print function 

4 Measuring time within a parallel context 

Measuring time in a parallel context is a delicate matter. First of all, when moving from single 

threaded to parallel, the definition of ‘total execution time’ must be updated: the total execution time is the 

time taken by the slowest worker in the set to complete the execution.  
Moreover, in many occasions it is not even simple to have a common time reference between 

multiple processes: if they are running on the same CPU with known synchronizations between the cores it’s 

quite trivial to measure execution time, but the things get much more complicating when involving network 
communication. In this case, it should be kept in consideration that the time measurement by itself take some 

time to complete and may need process communication and, thus, synchronization. 

// std::cout hooking interface 

namespace std { 

    class mpibuf: public streambuf { 

    protected: 

        std::string m_Buffer; 

 

        mpibuf() { 

            m_Buffer.reserve(4096); 

        } 

 

        virtual int_type overflow(int_type c) { 

            if (c != EOF) {          

                m_Buffer.push_back(c); 

            } 

            return c; 

        } 

 

        virtual int sync() { 

#if 1 

            // root print 

            MPISystem::Instance()->RootPrint(m_Buffer.c_str()); 

#else 

            // ordered print 

            MPISystem::Instance()->OrderedPrint(m_Buffer.c_str());   

            MPISystem::Instance()->Sync(); 

#endif 

            m_Buffer.clear(); 

            return 0; 

        } 

    }; 

}; 

 

std::mpibuf *m_MpiBuf; 

std::streambuf *m_OldBuf; 

 

void InitHooking() { 

    m_MpiBuf=new std::mpibuf; 

    m_OldBuf=std::cout.rdbuf(m_MpiBuf); 

} 

 

void StopHooking() { 

    std::cout.rdbuf(m_OldBuf);   

    delete m_MpiBuf; 

} 

 



 

Implementation and test of MLFit application using OpenMP and MPI parallel technologies 

 
 

 Page 12 of 27  

To solve these complications it’s common practice to use profiling tools, such as TAU (7): TAU is 

an easy to use profiling tool able to profile software using both MPI and OpenMP by instrumenting code 
before compilation. 

In the next sections I describe how to measure time at runtime using MPI and OpenMP native calls 

in a transparent way for the user, and how to profile the application with TAU to measure MPI and OpenMP 

overhead. 

4.1 Runtime application timing 

Both MPI and OpenMP provide an API to measure time efficiently and thread-safe. In particular, the 

total execution time measurement is quite trivial in OpenMP, since the application is executed only by one 

process spawning threads when needed.   

Similarly to OpenMP, also with MPI the measurement of total execution time via the provided API 
is taken on each process. To match the definition of total execution time in parallel context given before, a 

reduction must be performed keeping only the maximum time measurement between all the processes.  

We still need to fulfill the constraints of no code modification by the user of MLFit and leave him 
choose whether to use MPI or not. In other words, we have to think a way of develop an interface to time 

measurement independent of the chosen parallel library (if any). 

Again, class inheritance helps creating interface independent of implementation. In Code block 8 the 
timer class design exploiting the bridge design pattern for decoupling abstraction refinement inheritance and 

implementation inheritance is shown. 

 

 
Code block 8: Declaration of main Timer classes exposing bridge design pattern 

// timer types 

enum { 

    TIMER_LOCAL=0, 

    TIMER_GLOBAL 

}; 

 

// pure virtual prototype of back end class  

// that implements the timer 

class BaseTimer { 

protected: 

    int m_Type; 

 

public: 

    BaseTimer(int Type=TIMER_LOCAL); 

 

    virtual void Reset()=0; 

    virtual double Mark()=0; 

    virtual unsigned long long GetTickCount()=0; 

     

}; 

 

// class that should be used by the user (interface) 

class Timer { 

protected: 

    BaseTimer *m_Impl; 

 

public: 

    Timer(int Type=TIMER_LOCAL); 

    virtual ~Timer(); 

 

    void Reset(); 

    double Mark(); 

    unsigned long long GetTickCount(); 

}; 
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The user of MLFit simply uses a Timer object in its code, specifying if the timer has to perform only 

the local measure or have to perform the reduction to get the right execution time. When a Timer is 
instantiated, in its constructor a BaseTimer child is automatically created choosing the one that best fits user 

library selection.  

MPI timer, for example, is instantiated and used only if MPI is enabled in compilation; if both 

OpenMP and MPI are active at the same moment, MPI timer is preferred since OpenMP timer is not able to 
measure correctly the total execution time of the process set. Complete source code of the MPI timer is 

available in Appendix D: MPITimer class details. 

4.2 External profiling with TAU 

TAU is a powerful external profiling tool supporting both OpenMP and MPI. It is divided in two 

different applications: a script backend for instrumented code generation and a GUI frontend for graphical 
results plotting.  

Once installed, it’s enough to replace the compiler command from the usual gcc/icpc/mpicc to 

tau_compile.sh script to automatically build a profiled version of the program. After execution, a profile file 
is generated in the same directory with precise function timings, memory occupancy and communication 

latency measurements. 

The GUI processes those profile files generating easily readable charts. Figure 2 demonstrates TAU 
ability to profile applications with both OpenMP and MPI running.  

 

 
Figure 1: TAU graphical user interface screenshot demonstrating the profiling of an application using both MPI 

and OpenMP (respectively, 4 MPI processes with 3 OpenMP threads each).  

 

In the context of this particular application, TAU is used for precise measurements of MPI 
communication overhead, verifying that MPI contribution to total execution time is totally negligible when 

compared to the time spent by PDF evaluation floating point operations, as clearly shown in Figure 3. The 

most expensive MPI call is MPI_init, taking only 0.013 s to be executed. 
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Figure 2: TAU graphical user interface screenshot showing the precise time fractions of any function in the 

program, included TAU overhead, in a common runtime scenario with 100k events and 12 MPI workers. 

5 Testing the prototype 

MLFit prototype is tested in different scenarios: first with only OpenMP or MPI working 

demonstrating good scalability with both technologies, then in the hybrid scenario with both OpenMP and 

MPI at the same time. Very interesting results come out of this last series of tests, since MPI proves to be 

more effective than OpenMP when scaling to multi-socket systems. 
The hardware where the application has been tested is a dual socket Intel system with Westmere-EP 

architecture; each CPU is a 6 cores SMT Xeon running at 2.67 GHz. All the tests run with 100,000 input 

events with a simple PDF: a Gaussian distribution. In order to have a good amount of workload each 
program run repeats 10.000 times the whole evaluation.  

It should be pointed that the system has only 12 physical cores, but I expect best performance with 

24 parallel workers because of SMT capabilities of the CPU.  

5.1 Running with OpenMP 

Here I present OpenMP scalability results. MLFit prototype is compiled with both OpenMP and 
MPI, but no MPI parallelization is performed (process number is fixed to 1), while OpenMP thread number 

is varying to measure only OpenMP scalability.  

Graph 1 shows the results obtained. OpenMP achieves good scalability, up to 10.6x with 12 cores 

involved. 
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Graph 1: OpenMP speedup graph test run with only 1 MPI process 

 

5.2 Running with MPI 

In this section I present MPI scalability results. MLFit prototype is compiled with both OpenMP and 
MPI in the same way used to measure OpenMP scalability, but now OpenMP thread number is fixed to 1 

while MPI process number is varying. 

Graph 2 shows the results obtained. MPI achieves good scalability, up to 10.2x with 12 cores 
involved. Compared to the OpenMP, MPI is slightly slower when comparing mean times. Although, if we 

compare minimum execution time in each scenario, MPI is performing slightly better than OpenMP. The 

bigger variance in MPI execution time is probably due to the loopback network communication, which 

requires more operating system support. 
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Graph 2: MPI speedup graph test run with only 1 OpenMP thread 

 

5.3 Running with OpenMP and MPI 

In this section I present results obtained in the hybrid scenario, with both OpenMP and MPI running 
at the same time. In order to find the best balance between the two technologies, I fix the number of total 

parallel workers to K varying the number of MPI workers, P , and the number of OpenMP threads, T , under 

the constraint that  ·PT K . 

Since the system has 12 physical cores with SMT, two series of tests are shown with a total of 

12K   and 24K   parallel workers. 

The execution time results of 12K   tests are shown in Table 1. Here the best compromise is 

obtained with 2 MPI processes spawning 6 OpenMP threads each. This result is perfectly understandable 
considering of the topology of the system: two CPU, 6 cores each, with shared L3 cache able to contain all 

the input data. Since OpenMP is especially minded to work in shared memory, it’s exploiting the L3 cache 

better than MPI that needs network communication. 

 

MPI  OpenMP Execution time (s) Best execution time (s) 

1 12 3.00 ± 0.031 2.90 

2 6 2.97 ± 0.030 2.91 

3 4 3.04 ± 0.176 2.94 

4 3 3.60 ± 0.464 2.93 

6 2 3.18 ± 0.398 2.93 

12 1 3.09 ± 0.223 2.93 
Table 1: Execution times with both OpenMP and MPI. A total of 12 parallel workers are 

active in each test, running with 100k events and 10k program repetitions. The best results 
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are achieved in a hybrid scenario where OpenMP is dominating and have the same number 
of threads as the number of cores per CPU. 

The execution time results of 24K   tests are shown in Table 2. In this scenario the best 

performance possible within this system is achieved, since all the SMT units are fully exploited with a 21,4% 

speedup from the 12K   runs.  

The best compromise is achieved by 12 MPI processes spawning 2 OpenMP threads each. When 

enabling SMT, MPI is performing much better than OpenMP. 

 

MPI  OpenMP Execution time (s) Best execution time (s) 

1 24 4.85 ± 1.40 2.29 

2 12 4.40 ± 0.97 2.55 

3 8 2.91 ± 0.67 2.23 

4 6 2.77 ± 0.58 2.14 

6 4 2.63 ± 0.32 2.15 

8 3 2.61 ± 0.93 2.12 

12 2 2.34 ± 0.15 2.10 

24 1 4.19 ± 0.12 4.05 
Table 2: Execution times with both OpenMP and MPI. A total of 24 parallel workers are 

active in each test exploiting Xeon SMT capabilities, running with 100k events and 10k 

program repetitions. The best results are again achieved in a hybrid scenario where MPI is 
dominating. 

6 Conclusions and future work 

Tests show that MPI on the top of OpenMP, other than allowing to run the application on a cluster 

system, is giving a boost to overall performance. In the future different hardware solution can be tested. 
Currently, other than the Xeon platform, MLFit has been also tested only on the Intel Single-chip Cloud 

Computer research processor on the top of RCCE library, achieving very good performance and scalability.  

Much bigger speedups can be imagined in Microserver solutions, where an high number of low-
power local CPUs are interconnected by an higher latency PCIExpress bus, or in distributed memory 

systems. 

Appendix A: MPISystem class details 

 
class MPISystem { 

protected: 

    MPISystem(bool DoInit=false); 

    MPISystem(const MPISystem &Ref); 

    virtual ~MPISystem(); 

 

    int m_WorkerId; 

    int m_WorkerNum; 

    int m_RootId; 

    std::mpibuf *m_MpiBuf; 

    std::streambuf *m_OldBuf; 

    bool m_EnableOutputHanging; 

    int m_OutputMode; 

 

    virtual void DoInit() {} 

    virtual void DoFinalize() {} 

    virtual bool DoIsInitialized() const {return false;} 

    virtual int DoGetWorldRank() const {return 0;} 

    virtual int DoGetWorldSize() const {return 1;} 
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    virtual void DoWorldBarrier() const {} 

    virtual void DoWorldBcast( 

        char *Buf,  

        int Size,  

        int Datatype,  

        int Root 

    ) {} 

    virtual void DoWorldReduce( 

        char *Send,  

        char *Receive,  

        int Size,  

        int Datatype,  

        int Operation,  

        int Root 

    ) {} 

    virtual void DoWorldAllreduce( 

        char *Send, 

        char *Receive,  

        int Size,  

        int Datatype,  

        int Operation 

    ) {} 

    virtual double DoWtime() const {return 0.0;} 

    virtual double DoWtick() const {return 0.0;} 

 

public: 

    static MPISystem *Instance(); 

 

    // main 

    void Init( 

        bool EnableOutputHanging=true,  

        int OutputMode=MPI_PRINTMODE_ONLYROOT 

    ); 

    void Shutdown(); 

    void Sync() const; 

    bool Initialized() const; 

    int GetWorkerId() const; 

    int GetWorkerNum() const; 

    int GetRootId() const; 

 

    // io functions 

    void OrderedPrint(const char *Buffer);   

    void RootPrint(const char *Buffer); 

 

    // cooperative work functions 

    void WaitRootEvent(int NewRootId); 

    void ChangeRootWorker(int DestWorkerId); 

    void NextRootWorker(); 

 

    // mpi-calls 

    void WorldBarrier() const; 

    void WorldBcast( 

        void *Buf,  

        int Size,  

        int Datatype,  

        int Root 

    ); 

    void WorldReduce( 

        void *Send,  

        void *Receive,  

        int Size,  
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        int Datatype,  

        int Operation,  

        int Root=-1 

    ); 

    void WorldAllreduce( 

        void *Send,  

        void *Receive,  

        int Size,  

        int Datatype,  

        int Operation 

    ); 

    double Wtime() const; 

    double Wtick() const; 

 

    // specific functions 

    int GetThreadElements( 

        int TotalEvents,  

        int &Start,  

        int &End 

    ); 

}; 

Appendix B: Adding support to OpenMPI 

 

// the purpose of this macro is shutting down OMPI 

#ifdef ENABLE_OMPI 

    #define OMPISafeCall(p)     p 

    #define OMPIElse(p) 

#else 

    #define OMPISafeCall(p) 

    #define OMPIElse(p)         p 

#endif 

 

class OMPISystem: public MPISystem { 

    friend class MPISystem; 

protected: 

    OMPISystem(); 

    OMPISystem(const OMPISystem &Ref); 

    ~OMPISystem(); 

 

    MPI_Op GetOp(int Operation); 

    MPI_Datatype GetDatatype(int Datatype); 

 

    void DoInit(); 

    void DoFinalize(); 

    bool DoIsInitialized() const; 

    int DoGetWorldRank() const; 

    int DoGetWorldSize() const; 

    void DoWorldBarrier() const; 

    void DoWorldAllreduce( 

        char *Send,  

        char *Receive,  

        int Size,  

        int Datatype,  

        int Operation 

    ); 

    void DoWorldReduce( 

        char *Send, 

        char *Receive, 

        int Size,  



 

Implementation and test of MLFit application using OpenMP and MPI parallel technologies 

 
 

 Page 20 of 27  

        int Datatype,  

        int Operation,  

        int Root 

    ); 

    void DoWorldBcast( 

        char *Buf,  

        int Size,  

        int Datatype,  

        int Root 

    ); 

    double DoWtime() const; 

    double DoWtick() const; 

}; 

 

 

OMPISystem::OMPISystem() : MPISystem() { 

    Init(); 

} 

 

OMPISystem::OMPISystem(const OMPISystem &Ref) : MPISystem(Ref) { 

    Init(); 

} 

 

OMPISystem::~OMPISystem() { 

    Shutdown();  

} 

 

inline MPI_Op OMPISystem::GetOp(int Operation) { 

    MPI_Op MPIOp; 

    switch (Operation) { 

        case MPI_OP_MAX: 

            MPIOp=MPI_MAX; 

            break; 

        case MPI_OP_SUM: 

            MPIOp=MPI_SUM; 

            break; 

        default: 

            LOG("Invalid operation"); 

            exit(1); 

            break; 

    } 

    return MPIOp; 

} 

 

inline MPI_Datatype OMPISystem::GetDatatype(int Datatype) { 

    MPI_Datatype MPIDt; 

    switch (Datatype) { 

        case MPI_DATATYPE_INT: 

            MPIDt=MPI::INT; 

            break; 

        case MPI_DATATYPE_FLOAT: 

            MPIDt=MPI_FLOAT; 

            break; 

        case MPI_DATATYPE_DOUBLE: 

            MPIDt=MPI_DOUBLE; 

            break; 

        default: 

            LOG("Invalid data type"); 

            exit(1); 

            break; 

    } 
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    return MPIDt; 

} 

 

void OMPISystem::DoInit() { 

    OMPISafeCall( 

        MPI::Init(); 

    ) 

} 

 

void OMPISystem::DoFinalize() { 

    OMPISafeCall( 

        MPI::Finalize(); 

    ) 

} 

 

bool OMPISystem::DoIsInitialized() const { 

    OMPISafeCall( 

        return MPI::Is_initialized(); 

    ) 

    return false; 

} 

 

int OMPISystem::DoGetWorldRank() const { 

    OMPISafeCall( 

        return MPI::COMM_WORLD.Get_rank(); 

    ) 

    return 0; 

} 

 

int OMPISystem::DoGetWorldSize() const { 

    OMPISafeCall( 

        return MPI::COMM_WORLD.Get_size(); 

    ) 

    return 1; 

} 

 

void OMPISystem::DoWorldBarrier() const { 

    OMPISafeCall( 

        MPI::COMM_WORLD.Barrier(); 

    ) 

} 

 

void OMPISystem::DoWorldAllreduce(char *Send, char *Receive, int Size,  

    int Datatype, int Operation) { 

    MPI_Op Op = GetOp(Operation); 

    MPI_Datatype Dt = GetDatatype(Datatype); 

    OMPISafeCall( 

        MPI::COMM_WORLD.Allreduce(Send, Receive, Size, Dt, Op); 

    ) 

} 

 

void OMPISystem::DoWorldReduce(char *Send, char *Receive, int Size,  

 int Datatype, int Operation, int Root) { 

    MPI_Op Op = GetOp(Operation); 

    MPI_Datatype Dt = GetDatatype(Datatype); 

    OMPISafeCall( 

        MPI::COMM_WORLD.Reduce(Send, Receive, Size, Dt, Op, Root); 

    ) 

} 

 

void OMPISystem::DoWorldBcast(char *Buf, int Size,  
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int Datatype, int Root) { 

    MPI_Datatype Dt = GetDatatype(Datatype); 

    OMPISafeCall( 

        MPI::COMM_WORLD.Bcast(Buf, Size, Dt, Root); 

    ) 

} 

 

double OMPISystem::DoWtime() const { 

    OMPISafeCall( 

        return MPI_Wtime(); 

    ) OMPIElse ( 

        return 0.0; 

    ) 

} 

 

double OMPISystem::DoWtick() const { 

    OMPISafeCall( 

        return MPI_Wtick(); 

    ) OMPIElse ( 

        return 0.0; 

    ) 

} 

Appendix C: Adding support to RCCE 

 

// the purpose of this macro is shutting down RCCE 

#ifdef ENABLE_RCCE 

    #define RCCESafeCall(p)     p 

    #define RCCEElse(p) 

#else 

    #define RCCESafeCall(p) 

    #define RCCEElse(p)         p 

#endif 

 

class RCCESystem: public MPISystem { 

    friend class MPISystem; 

protected: 

    int m_State; 

 

    RCCESystem(); 

    RCCESystem(const RCCESystem &Ref); 

    ~RCCESystem(); 

 

    int GetOp(int Operation); 

    int GetDatatype(int Datatype); 

    int GetDatatypeSize(int Datatype); 

 

    void DoInit(); 

    void DoFinalize(); 

    bool DoIsInitialized() const; 

    int DoGetWorldRank() const; 

    int DoGetWorldSize() const; 

    void DoWorldBarrier() const; 

    void DoWorldAllreduce( 

        char *Send,  

        char *Receive,  

        int Size,  

        int Datatype,  

        int Operation 

    ); 
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    void DoWorldReduce( 

        char *Send, 

        char *Receive, 

        int Size,  

        int Datatype,  

        int Operation,  

        int Root 

    ); 

    void DoWorldBcast( 

        char *Buf,  

        int Size,  

        int Datatype,  

        int Root 

    ); 

    double DoWtime() const; 

}; 

 

RCCESystem::RCCESystem() : MPISystem() { 

    m_State = 0; 

    Init(); 

} 

 

RCCESystem::RCCESystem(const RCCESystem &Ref) : MPISystem(Ref) { 

    m_State = 0; 

    Init(); 

} 

 

RCCESystem::~RCCESystem() { 

    m_State = 0; 

} 

 

inline int RCCESystem::GetDatatypeSize(int Datatype) { 

    int Bytes = 0; 

    switch (Datatype) { 

        case MPI_DATATYPE_INT: 

            Bytes=sizeof(int); 

            break; 

        case MPI_DATATYPE_FLOAT: 

            Bytes=sizeof(float); 

            break; 

        case MPI_DATATYPE_DOUBLE: 

            Bytes=sizeof(double); 

            break; 

        case MPI_DATATYPE_LONGLONG: 

            Bytes=sizeof(long long); 

            break; 

        default: 

            exit(1); 

            break; 

    } 

    return Bytes; 

} 

 

inline int RCCESystem::GetOp(int Operation) { 

    int RCCEOp; 

    switch (Operation) { 

        case MPI_OP_MAX: 

            RCCEOp=RCCE_MAX; 

            break; 

        case MPI_OP_SUM: 

            RCCEOp=RCCE_SUM; 
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            break; 

        default: 

            exit(1); 

            break; 

    } 

    return RCCEOp; 

} 

 

inline int RCCESystem::GetDatatype(int Datatype) { 

    int RCCEDt; 

    switch (Datatype) { 

        case MPI_DATATYPE_INT: 

            RCCEDt=RCCE_INT; 

            break; 

        case MPI_DATATYPE_FLOAT: 

            RCCEDt=RCCE_FLOAT; 

            break; 

        case MPI_DATATYPE_DOUBLE: 

            RCCEDt=RCCE_DOUBLE; 

            break; 

        case MPI_DATATYPE_LONGLONG: 

            RCCEDt=RCCE_LONG; 

            break; 

        default: 

            exit(1); 

            break; 

    } 

    return RCCEDt; 

} 

 

extern int *_argc; 

extern char ***_argv; 

 

void RCCESystem::DoInit() {  

    RCCESafeCall( 

        RCCE_init(_argc, _argv); 

        RCCE_barrier(&RCCE_COMM_WORLD); 

    ) 

    m_State = 1; 

} 

 

void RCCESystem::DoFinalize() { 

    RCCESafeCall( 

        RCCE_finalize(); 

    ) 

    m_State = 0; 

} 

 

bool RCCESystem::DoIsInitialized() const { 

    return (m_State == 1); 

} 

 

int RCCESystem::DoGetWorldRank() const { 

    RCCESafeCall( 

        return RCCE_ue(); 

    ) RCCEElse ( 

        return 0; 

    ) 

} 

 

int RCCESystem::DoGetWorldSize() const { 
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    RCCESafeCall( 

        return RCCE_num_ues(); 

    ) RCCEElse ( 

        return 1; 

    ) 

} 

 

void RCCESystem::DoWorldBarrier() const { 

    RCCESafeCall( 

        RCCE_barrier(&RCCE_COMM_WORLD); 

    ) 

} 

 

void RCCESystem::DoWorldBcast(char *Buf, int Size,  

int Datatype, int Root) { 

    int Bytes = GetDatatypeSize(Datatype); 

    RCCESafeCall( 

        RCCE_bcast(Buf, Size*Bytes, Root, RCCE_COMM_WORLD); 

    ) 

} 

 

void RCCESystem::DoWorldAllreduce(char *Send, char *Receive, int Size, 

    int Datatype, int Operation) { 

    int Op = GetOp(Operation); 

    int Dt = GetDatatype(Datatype); 

    RCCESafeCall( 

        RCCE_allreduce(Send, Receive, Size, Dt, Op, RCCE_COMM_WORLD); 

    ) 

} 

 

void RCCESystem::DoWorldReduce(char *Send, char *Receive, int Size,  

 int Datatype, int Operation, int Root) { 

    int Op = GetOp(Operation); 

    int Dt = GetDatatype(Datatype); 

    RCCESafeCall( 

        RCCE_reduce(Send, Receive, Size, Dt, Op, Root, RCCE_COMM_WORLD); 

    ) 

} 

 

double RCCESystem::DoWtime() const { 

    RCCESafeCall( 

        return RCCE_wtime(); 

    ) RCCEElse ( 

        return 0.0; 

    ) 

} 

Appendix D: MPITimer class details 

 

// MPI timer performs local and global measurements 

// when MPI is enabled 

class MPITimer: public BaseTimer { 

protected: 

    double m_StartTime; 

    double m_TickFrequency; 

 

public: 

    MPITimer(int Type=TIMER_LOCAL) : BaseTimer(Type) { 

        m_StartTime=m_TickFrequency=0.0; 

    } 
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    void Reset() { 

        // we must assure that MPI is inited before proceeding 

        if (!MPISystem::Instance()->Initialized()) { 

            std::cerr << "MPI is not inited!" << std::endl; 

            exit(1); 

        } 

        switch (m_Type) { 

            case TIMER_GLOBAL: 

                // need to resynchronize workers  

    // for getting reference time 

                MPISystem::Instance()->Sync(); 

                break; 

            case TIMER_LOCAL: 

            default: 

                break; 

        } 

        m_StartTime = MPISystem::Instance()->Wtime(); 

    } 

     

    double Mark() { 

        double Local = MPISystem::Instance()->Wtime() - m_StartTime; 

        switch (m_Type) { 

            case TIMER_GLOBAL: { 

                // Mark local and allreduce to get  

                // the max time of execution 

                double Received=0.0f; 

                MPISystem::Instance()->WorldAllreduce( 

                    &Local,  

                    &Received,  

                    1,  

                    MPI_DATATYPE_DOUBLE,  

                    MPI_OP_MAX 

                ); 

                return Received; 

            } 

            case TIMER_LOCAL: 

            default: 

                break; 

        } 

        return Local;    

    } 

}; 
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